NOSSO MENU

sexta-feira, 14 de agosto de 2015

7 curiosidades matemáticas



1 Simetrias Nos Números

Primeiro- O que é simetria?

 Simetria é a relação que existe entre duas partes iguais (por exemplo: Elementos na natureza, imagens, números, etc) em lados opostos de um ponto . 
(Depende do assunto)

Veja a beleza da matemática

Veja a  mágica da matemática e a beleza da simetria dos números.

Simetria 1
               1 x 9 + 2  = 11
             12 x 9 + 3  = 111
           123 x 9 + 4  = 1111
         1234 x 9 + 5  = 11111
       12345 x 9 + 6  = 111111
     123456 x 9 + 7  = 1111111
    1234567 x 9 + 8  = 11111111
  12345678 x 9 + 9  = 111111111
123456789 x 9 + 10 = 1111111111

Simetria 2
               9 x 9 + 7 = 88
             98 x 9 + 6 = 888
           987 x 9 + 5 = 8888
         9876 x 9 + 4 = 88888
       98765 x 9 + 3 = 888888
     987654 x 9 + 2 = 8888888
    9876543 x 9 + 1 = 88888888
  98765432 x 9 + 0 = 888888888

Simetria 3
                             1 x 1 = 1            
                         11 x 11 = 121
                      111 x 111 = 12321
                   1111 x 1111 = 1234321
                11111 x 11111 = 123454321
             111111 x 111111 = 12345654321
          1111111 x 1111111 = 1234567654321
       11111111 x 11111111 = 123456787654321
    111111111 x 111111111 = 12345678987654321

Simetria 4

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 +  9 = 987654321



Parecer ser um curiosidade para um leitor que não sabe muito do assunto, entretanto, o fato destes números estarem dispostos com esta simetria se deve a toda a matemática que é baseada em padrões.

2  Olha que coisa - Tabuada do 37

3 x 37 = 111

6 x 37 = 222

9 x 37 = 333

12 x 37 = 44

16 x 37 = 55

18 x 37 = 66

21 x 37 = 77

24 x 37 = 88

27 x 37 = 99

Legal né!

3   Como formar a tabuada do 9

Faça o seguinte:

Uma coluna de 0 a 9 ( em ordem crescente)
0
1
2
3
4
5
6
7
8
9

Agora faça uma coluna de 9 a 0 (em ordem decrescente)

9
8
7
6
5
4
3
2
1
0

Junte as duas colunas na seguinte forma:
09
18
27
36
45
54
63
72
81
90
Esses são os resultados da tabuada do nove.

Legal né!

4  multiplicação por 11 – curiosidade

veja que beleza:

33 x 11 = 363 (3 + 3 = 6)
43 x 11 = 473 ( 4 + 3 = 7)
54 x 11 = 594 (5+4 = 9)

Observe que o resultado da soma vai no meio.
E quando essa soma ultrapassar 9:

67 x 11 = 6137 =737 (6 + 7 = 13; somamos o 1 ao 6)

Faça o teste!

5 Olha que produto interessante:

1 x 1 = 1

11 x 11 = 121

111 x 111 = 12321

1111 x 1111 = 1234321

6 Elevando ao quadrado

Veja que maravilha quando os números 9, 99, 999... são elevados ao quadrado.

Veja:

9^2 = 81
99^2 = 9.801
999^2 = 998.001
9999^2 = 99.980.001
99999^ = 9.999.800.001
etc
Onde ^ significa elevado.


Observe que a quantidade de zeros é proporcional a quantidade de noves.





ângulos – curioso

Veja que legal:
Os números tem ângulos , irei provar:
Veja!

Os números podem ser identificados por ângulos.
Observe a figura:





veja que os traços verdes representam a quantidade de ângulos 


1 corresponde a um ângulo 
2 corresponde a um ângulo
3 corresponde a um ângulo 
etc

por : Dan. S.                                                                                                                                      



O MÉTODO DE COMPLETAR QUADRADOS: PROCESSO PRÁTICO




COMPLETANDO QUADRADOS

Veja um método prático de resolver equações do segundo grau sem sabermos a fórmula de Bhaskara, o método de completar quadrados.




COMPLETANDO QUADRADOS

    O método de al-Khowarizmi. O matemático al-Khowarimi desenvolveu um processo geométrico para a resolução de equações de segundo grau com uma incógnita.

   Figura 1. área de um quadrado como soma de áreas retângulos e quadrados menores.

Analisando a figura 1,  observamos que é uma representação geométrica da expressão (a+b) ² .

 Por essa representação geométrica, vemos que:

(a+b) ² = a² + 2ab + b²

Em que:

a² é a área do quadrado de lado a
2ab é a área de um retângulo de lado a e b
b² é a área do quadrado de lado b

obs: passo a passo da expressão (a+b) ².
(a+b) ² = a² + 2ab + b² =>
(a+b) ² = (a + b)(a + b) = a² + ab + ab + b²
= a² + 2ab + b²

( essa expressão de uso frequente no cálculo algébrico é chamado de produto notável, especificamente, quadrado da soma de dois termos.)
                    Obs: (a+b) ² é diferente de a² + b² ( pois a² + b² é somente uma parte de  (a+b) ²).

Exemplo 1:

Interpretando geometricamente a expressão
x² + 8x, complete o quadrado.



Figura 2a


Escrevemos:

x² + 8x = x² + 2(4x)
x² é a área de um quadrado de lado x
2(4x) 4x é a área de um retângulo de lados 4 e x
    Para completar o quadrado acrescentaremos o quadrado de lados 4

Figura 2b


Analisando a figura:

  Quando acrescentamos o quadrado de    lado 4, ou seja, de área 4², podemos  adicionar 4² à expressão x² + 8x,  obtendo x² + 8x + 4².  x² + 8x + 4² é um trinômio quadrado perfeito.

Dessa maneira podemos escrever:

Passo a passo

x² + 8x + 4² (expressão algébrica correspondente à área so quadrado formado) =   x² + 8x + 16 (trinômio quadrado perfeito)
(x+4)² ( forma fatorada do trinômio)
(x+4)² = (x + 4)(x+4) = x² + 4x + 4x + 4² = x² + 8x + 4²

Obs: x² + 8x é diferente de x² + 8x + 16

COMPLETANDO QUADRADOS

O processo de Al-Khowarimi:

·                   Resolver a equação x² + 8x + 15 = 0

Escrevendo:

Primeiro passo

 x² + 8x = x² + 2(4x)
é a área do quadrado de lados x
4x é a área de um retângulo cujos lados medem 4 e x

 Segundo passo Pela (figura 2b) foi necessário acrescentar o número 4², ou seja, 16 à expressão x² + 8x, para obter o quadrado.  
Geometricamente descoberto o valor que devemos acrescentar à expressão x² + 8x (que é 16)  manipularemos a expressão dada:

 Passo três

x² + 8x + 15 = 0
x² + 8x = -15 (principio aditivo)
x² + 8x + 16 = -15 +16 (princípio de equivalência das equações)

passo quatro

Ao acrescentarmos 16 à expressão x² + 8x no primeiro membro da equação e 16 ao segundo membro da equação, obteremos uma nova equação equivalente a anterior.

Passo cinco

x² + 8x + 16 = -15 +16 =
= x² + 8x + 16 = 1

fatorando o trinômio quadrado perfeito obtido no primeiro membro, temos a equação
(x + 4 )² = 1

 Dai que:

(x + 4 )² = 1
(x + 4) =
x + 4 = 1
x = -3

ou

(x + 4)  =
x + 4 = -1
x = -1 – 4
x = -5


os números reais -3 e -5 sãos as raízes da equação x² + 8x + 15 = 0.

por: Dan. S.

Equação de segundo grau



Equação de segundo grau

O que é uma equação de segundo grau?

Na matemática, equação do segundo grau ou equação quadrática  é uma equação polinomial de grau dois.

A forma geral de uma equação do segundo grau é:

ax^2 + bx + c

Em que:
x=é variável
a,b,c=constantes
obs: a tem que ser diferente de 0


Obs1: a, b e c, são chamadas respectivamente de coeficiente quadrático, coeficiente linear e termo livre ou coeficiente constante.

Obs2: A variável x representa um valor a ser determinado, e também é chamada de incógnita

Explicação para reforçar

Equações do tipo ax + b = 0, em que a e b são números reais com a ≠ 0 são consideradas equações do 1º grau, podendo ter no máximo um resultado.
Por outro lado,  expressões que satisfazem a condição ax² + bx + c = 0, em que a, b e c são números reais com a diferente de 0  são consideradas  equações do segundo grau ( lembrando que equação quadrática  é uma equação polinomial de grau dois ( o expoente 2 é o grau 2)). 
As equações de segundo grau podem ser resolvidas através do Teorema de Bháskara ( nesta postagem vamos usar apenas o método de Bháskara, mais existe outras maneira de solucionar uma equação de segundo grau, ex:  método de completar quadrados ).

Fórmula de Bháskara



Para utilizar o teorema de Bháskara é preciso conhecer os valores dos coeficientes a, b, c.

Exemplo:


x^2 + 2x – 5 = 0

os coeficientes a, b e c são:

 a = 1, b = 2 e c = –5


obs: As equações do 2º grau pode ter no máximo duas raízes, ou seja, duas soluções reais.

A existência das raízes depende do valor do delta (discriminante).

Através do valor do delta podemos ter as seguintes situações:

Delta < 0, não possui raízes reais.
Delta > 0, possui duas raízes reais e distintas.
Delta  = 0, possui duas raízes reais idênticas.


Veja alguns exemplos resolvidos pelo método de Bháskara:

1)   

Dada a equação x^2 + 2x – 8 = 0, determine suas raízes, caso existir.

onde :

a = 1, b = 2 e c = –8

delta = b^2 – 4ac
delta = 2^2 – 4 * 1 * (–8)
delta = 4 + 32
delta = 36



As raízes da equação são x1 = 2 e x2 = -4


2) 

Determine as soluções reais da seguinte equação: 9x^2 - 4 = 0

a = 9, b = 0 e c = -4

Obs: O b vem acompanhado do x, como não tem b, então b = 0.

delta = b^2 – 4ac
delta = 0^2 – 4 * 9 * (-4)
delta = 0 + 144
delta = 144







A equação possui raízes reais, x1 2/3 e  x2  = -2/3

por: Dan. S.

Redes Sociais

anuncios